giovedì 27 marzo 2014

Aplogruppo R1a

Major new article on the deep origins of Y-haplogroup R1a (Underhill et al. 2014)

Reblogged from: Dieneke's Antropology Blog.

Five years ago, Underhill et al. (2009) presented a major advance in the study of haplogroup R1a. Much new knowledge was added in the interim by genetic genealogists and some scientists,  and now a major new paper by Peter Underhill comes to update our knowledge of this important and widely spread human lineage.

The shallow coalescence time within R1a will not surprise many genetic genealogists while its diversification in the vicinity of present-day Iran might. A ~5-7kyBP coalescence would make the expansion of R1a lineages presumably visible to future ancient DNA studies which will probably be the final arbiter of the veracity of the date estimate in this paper and its postulated place of origin.

I'll try to digest what the new information has to say about Eurasian prehistory, but in the meantime...



... I will, however, take some time to highlight the passing of the guard from Y-STRs to Y-SNPs which I had long ago anticipated. There is some lingering controversy about the substitution rate on the Y chromosome is, but it is hopeful that this will be resolved before not too long as the price of whole genome sequencing is always dropping and the samples sequenced in this study are probably the first of many to come.

In any case:
Our phylogeographic data lead us to conclude that the initial episodes of R1a-M420 diversification occurred in the vicinity of Iran and Eastern Turkey, and we estimate that diversification downstream of M417/Page7 occurred ~5800 years ago. This suggests the possibility that R1a lineages accompanied demic expansions initiated during the Copper, Bronze, and Iron ages, partially replacing previous Y-chromosome strata, an interpretation consistent with albeit limited ancient DNA evidence.54, 60 However, our data do not enable us to directly ascribe the patterns of R1a geographic spread to specific prehistoric cultures or more recent demographic events. High-throughput sequencing studies of more R1a lineages will lead to further insight into the structure of the underlying tree, and ancient DNA specimens will help adjudicate the molecular clock calibration. Together these advancements will yield more refined inferences about pre-historic dispersals of peoples, their material cultures, and languages.
It would of course be great to get some ancient DNA data from Iran and Eastern Turkey:
Among the 120 populations with sample sizes of at least 50 individuals and with at least 10% occurrence of R1a, just 6 met these criteria, and 5 of these 6 populations reside in modern-day Iran. Haplogroup diversities among the six populations ranged from 0.78 to 0.86 (Supplementary Table 4). Of the 24 R1a-M420*(xSRY10831.2) chromosomes in our data set, 18 were sampled in Iran and 3 were from eastern Turkey. Similarly, five of the six observed R1a1-SRY10831.2*(xM417/Page7) chromosomes were also from Iran, with the sixth occurring in a Kabardin individual from the Caucasus. Owing to the prevalence of basal lineages and the high levels of haplogroup diversities in the region, we find a compelling case for the Middle East, possibly near present-day Iran, as the geographic origin of hg R1a.
Also, the finding that...
The four subhaplogroups of Z93 (branches 9-M582, 10-M560, 12-Z2125, and 17-M780, L657) constitute a multifurcation unresolved by 10 Mb of sequencing; it is likely that no further resolution of this part of the tree will be possible with current technology. Similarly, the shared European branch has just three SNPs.
... seems to imply some Copper-to-Bronze Age guys did more than their fair share of fathering.

European Journal of Human Genetics , (26 March 2014) | doi:10.1038/ejhg.2014.50

The phylogenetic and geographic structure of Y-chromosome haplogroup R1a

Peter A Underhill et al.

R1a-M420 is one of the most widely spread Y-chromosome haplogroups; however, its substructure within Europe and Asia has remained poorly characterized. Using a panel of 16 244 male subjects from 126 populations sampled across Eurasia, we identified 2923 R1a-M420 Y-chromosomes and analyzed them to a highly granular phylogeographic resolution. Whole Y-chromosome sequence analysis of eight R1a and five R1b individuals suggests a divergence time of ~25 000 (95% CI: 21 300–29 000) years ago and a coalescence time within R1a-M417 of ~5800 (95% CI: 4800–6800) years. The spatial frequency distributions of R1a sub-haplogroups conclusively indicate two major groups, one found primarily in Europe and the other confined to Central and South Asia. Beyond the major European versus Asian dichotomy, we describe several younger sub-haplogroups. Based on spatial distributions and diversity patterns within the R1a-M420 clade, particularly rare basal branches detected primarily within Iran and eastern Turkey, we conclude that the initial episodes of haplogroup R1a diversification likely occurred in the vicinity of present-day Iran.